If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(+1)*K^2-4K+1=0
We add all the numbers together, and all the variables
1*K^2-4K+1=0
We add all the numbers together, and all the variables
K^2-4K+1=0
a = 1; b = -4; c = +1;
Δ = b2-4ac
Δ = -42-4·1·1
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$K_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$K_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$K_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{3}}{2*1}=\frac{4-2\sqrt{3}}{2} $$K_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{3}}{2*1}=\frac{4+2\sqrt{3}}{2} $
| 6t+2t−5t−3t+t=9 | | -(d-8)=2 | | x=2/3x33/4 | | 5x+38=2x+9=180 | | 6-12x=30 | | -12k−14k+14k−-5k+-15=13 | | 5x+38=2x+9 | | (24x+12)(x+1)=0 | | 6w+12=6 | | x+4=4(x-26) | | -3(v-14)=-9 | | 20d-4d-12d-2d-1=3 | | 180+70x=720+60x | | −2c−36=2c+16 | | 7(6x+10)=322 | | 20d−4d−12d−2d−1=3 | | 2^(x-3)=31 | | 11s-7s+3s-6s+3s=20 | | 3x+3x+1=21 | | 9-n=3 | | u/5-2.4=14.9 | | 34x+11=19 | | 11s−7s+3s−6s+3s=20 | | 17g-12g+3g=16 | | 33x-11=4 | | -8x-45=6x-13 | | 7j-2j+5j-10=10 | | 45x-5=2 | | -5.1=6.1+v/7 | | 3p^2+14p+24=0 | | 7j−2j+5j−10=10 | | -2(-4)-x=1 |